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The homogenization procedure is applied to the problem of wave propagation in the biphasic mode in
porous media saturated with a Newtonian fluid. The local problems corresponding to the solid and fluid phases
have been solved separately for complex three-dimensional media. The effective rigidity tensor, some effective
coefficients, the dynamic permeability, the celerities, and the attenuation of the three waves are systematically
determined. The characteristic length � was successfully used to gather results for the dynamic permeability as
well as for the attenuation coefficients for all media.
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I. INTRODUCTION

Wave propagation through saturated porous media is of
large theoretical and practical interest. In seismic prospec-
tion, for instance, in most cases waves propagate through
media which contain at least one fluid and often two such as
oil or water. The presence of these fluids influences the wave
celerities.

The first study of wave propagation on the macroscopic
level in saturated porous media is the poroelasticity theory of
�1� for low frequencies which was extended by �2� for any
frequency range. Suppose that the elastic solid matrix is satu-
rated with a compressible viscous fluid and that the solid and
fluid densities are comparable. Macroscopic parameters such
as the effective elastic moduli of the solid skeleton, its com-
pressibility, and its permeability are required in this ap-
proach. Two propagation modes are found which depend on
the frequency range. The low frequencies correspond to the
drained regime for which the relative fluid and solid motion
is not zero, while the high frequencies correspond to the
undrained regime.

In the first mode, Ref. �2� demonstrated that two types of
waves propagate in the saturated media. The first one is the
fast compressional and shear waves, which correspond to
waves propagating in the elastic solid. The second one is the
slow compressional wave characterized by an important at-
tenuation, which was observed for the first time by �3�.

In contrast with the macroscopic analysis of �2�, the ho-
mogenization method derives the macroscopic properties
from the local characteristics of the media. This approach
was used by �4� for the quasistatic case and by �5� and �6� for
the dynamic behavior.

Reference �7� used the homogenization procedure in order
to study the harmonic wave propagation in porous media
saturated with a viscous Newtonian incompressible fluid.
There are three possible modes of wave propagation depend-
ing on the order of the transient Reynolds number: namely,
the biphasic, elastic, and viscoelastic modes. These modes
are also related to the contrast between mechanical properties
of the solid and fluid. Generally speaking, this method re-
quires the solution of the elastic equations in the solid and of
the Navier-Stokes equation in the fluid; the first problem is
the same as for dry media.

The influence of the frequency and geometric characteris-
tics on the dynamic permeability was examined by �8� and
�9� for various frequency ranges. The dynamic permeability
which requires the solution of the Navier-Stokes equation
depends on the frequency, and for simple geometries it can
be obtained analytically �2�. Reference �8� demonstrated that
the dynamic permeability can be expressed as a function of
the static permeability and the length scale for tube net-
works. Other geometries such as rough channels were exam-
ined by �10�. We are not aware of any contribution for com-
plex random geometries.

The major objective of our work is to study wave propa-
gation in dry or saturated media. For dry media, the wave
celerities, the polarization correction, the dispersion, and the
attenuation are reported in the companion paper �11�. The
present paper studies in a systematic way the dynamic per-
meability and the celerities of the various waves in saturated
porous media with realistic and real geometries. The overlap
between the two papers has been reduced to a minimum and
is restricted to the necessary common material in the general
presentation; there is no overlap in terms of results.

Section II recalls the basic equations which govern these
phenomena and the main features of the methodology which
is employed to solve them. Section III presents the biphasic
macroscopic mode which will be studied in most part of this
paper when both solid and liquid phases influence the mac-
roscopic wave properties.
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The dynamic permeability is detailed in Sec. IV. The nu-
merical solution is briefly commented on, but this section is
mostly devoted to the results obtained for a few types of
reconstructed media and to two real samples measured by
microtomography. Several dimensionless representations are
tried based on the choice of various length scales.

The elastic problem which was already partly studied in
�11� is presented in Sec. V. The celerities of the three waves
and their attenuations are given in Sec. VI for the various
media which were detailed in Sec. IV. Again various dimen-
sionless representations are discussed. Finally, the results are
summarized in Sec. VII.

Technical details are gathered in �12� available at the
Electronic Physics Auxiliary Service. It is divided into two
parts; the first one presents the solution of the microscopic
equations and the resulting macroscopic quantities; the sec-
ond one presents the necessary developments for the elastic
problem posed by a solid medium saturated with a fluid.

II. GENERAL

A. Basic equations

The porous matrix is an elastic heterogeneous material.
The size l of the heterogeneities �scale of the geometrical
microstructure or of property variations� is supposed to be
much smaller than the overall dimension Ł of the domain
�Fig. 1�. The material is assumed to be statistically homoge-
neous on some intermediate scale between l and Ł, and
therefore it can be regarded as spatially periodic; i.e., it is
made of identical unit cells � of size L. � is partitioned into
a solid and a fluid phase denoted by �s and � f, respectively.
� f is filled by an incompressible Newtonian fluid.

Consider the propagation in this medium of an harmonic
wave of pulsation � and wavelength � intermediate between
l and Ł. In the following, the length L is used as a charac-
teristic macroscopic scale:

L = �/2� . �1�

Moreover, the lengths l, L, L, and � verify

l � L � L = �/2� . �2�

The small parameter 	, which is going to play a key role in
the expansion of the solution �13�, is defined as

	 = l/L � 1. �3�

Hereafter, all the quantities relative to the solid and fluid
phases are denoted by the subscripts s and f . 
, u, and �
denote the density, displacement, and stress tensor of the two
materials, respectively. The displacements us and u f are of
the form

u = ûei�t. �4�

In the solid matrix �s, wave propagation is governed on the
microscopic level by the elastic equation

� · �s = − 
s�
2us in �s, �5a�

where

e = �� · us + �� · us�t�/2, �s = C�4�:e , �5b�

where C�4� is the solid fourth-order elastic tensor. For isotro-
pic materials, the expression of the stress tensor reduces to

�s = �s�tr e� + 2�se , �5c�

where �s and �s are the Lamé coefficients.
The fluid velocity V is given by

V =
�u f

�t
= i�u f . �6�

Therefore, the linearized Navier-Stokes equations for the
fluid motion in � f can be written

� · � f = 
 f�V, � · V = 0, �7�

together with

� f = − PI + 2� fD�V�, D�V� =
1

2
�� · V+t� · V� , �8�

where P is the pressure and � f the dynamic viscosity.
Continuity of displacements and normal stresses at the

solid-fluid interface � implies

us = u f, ��s − � f� · n = 0 on � , �9�

where n is the unit normal to �.

B. Double-scale expansion in periodic heterogeneous media

In order to distinguish between the macroscopic and mi-
croscopic scales, two spatial variables x and y are intro-
duced. x is macroscopic—i.e., of order L—while y is
microscopic—i.e., of order l. Therefore,

y = 	−1x . �10�

Consequently, the spatial gradient operator becomes

� = �x + 	−1�y , �11�

where �x and �y are differential operators with respect to the
variables x and y, respectively. Any function of space can be

FIG. 1. Length scales in Eq. �2�. The periodic medium is com-
posed of identical unit cells �. Internal free boundaries are denoted
by �.
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represented as a function of these variables, f�x ,y�. Because
of the spatial periodicity of the medium, f is periodic in y;
moreover, f can be expanded as a series in terms of 	:

f�x,y� = � 	 jf�j��x,y� , �12�

where f�j��x ,y� is also a periodic function of y.
This expansion is applied to the displacements us and u f

and the pressure P:

us�x,y,t� = � 	 jus
�j��x,y,t� , �13a�

u f�x,y,t� = � 	 ju f
�j��x,y,t� , �13b�

P�x,y,t� = � 	 jP�j��x,y,t� , �13c�

where P, us, and u f are periodic functions of y.
Substitution of this expansion of us, Eq. �13a�, into Eq.

�5a� yields expansions for the deformation operator e and the
stress tensor �s. Then, a series of equations for the solid
phase for each power of 	 is obtained:

	−2:�y · �s
�−1� = 0,

	−1:�y · �s
�0� + �x · �s

�−1� = 0,

	0:�y · �s
�1� + �x · �s

�0� = − 
s�
2us

�0�,

. . . ,

	 j:�y · �s
�j+1� + �x · �s

�j� = − 
s�
2us

�j�. �14�

The expansion �13a�–�13c� of u f implies

V�x,y,t� = � 	 jV�j��x,y,t� , �15�

with V�j�= i�u f
�j�; V�j� is � periodic. Similarly, the stress ten-

sor � f can be expanded as

� f = �
j=−1




	 j� f
�j�. �16�

Substitution of the expansions �15� and �16� into Eq. �7�
yields a series of equations for the fluid phase similar to that
for the solid one for each power of 	:

	−2:�y . · � f
�−1� = 0,

	−1:�y · � f
�0� + �x · � f

�−1� = 0,

	0:�y · � f
�1� + �x · � f

�0� = 
 fi�V�0�, �17�

. . . ,

	 j:�y · � f
�j+1� + �x · � f

�j� = 
 fi�V�j�,

�y · V�0� = 0,

�y · V�j+1� + �x · V�j� = 0, j = 1,2,3, . . . . �18�

The rate of deformation D can be derived from Eq. �15� as

D�V� = 	−1Dy�V�0�� + �
j=0




	 j�Dx�V�j�� + Dy�V�j+1��� ,

�19�

where Dx and Dy denote the operator D applied to the
variables x and y, respectively.

Finally, the conditions for each power of 	 at the solid-
fluid interface are

us
�j� = u f

�j�, ��s
�j� − � f

�j�� · n = 0 on � . �20�

C. Various modes of wave propagation in a saturated
porous medium

By its macroscopic analysis, Ref. �2� showed that there
are two propagation modes for the low- and high-frequency
ranges. Similarly, by the homogeneization approach, Ref. �7�
showed that a transient Reynolds number RT appears in the
dimensionless flow Eq. �7�:

RT =

 f�l2

� f
. �21�

Three different modes of wave propagation are found for
RT=O�1�, O�	�, and O�	2�. These modes are also related to
the contrast � f� / �C�4�� between the mechanical properties
C�4� of the solid and � f� of the fluid, which can be of the
order O�	2�, O�	�, and O�1�.

Since the small parameter 	 is proportional to the ratio
between the microscale l and the wavelength �, it is propor-
tional to the frequency �:

	 	 l�

 f

Es
, �22�

where Es is the Young’s modulus of the solid.

1. Biphasic macroscopic mode

A Reynolds number of order O�1� corresponds to the low-
frequency range studied by �2�. The contrast between me-
chanical properties of the solid and fluid is of order O�	2�.
Then, the stress tensor � f takes the form

� f = − IP + 	22� fD�V� . �23�

Substitution of Eqs. �15�, �13c�, and �19� into Eq. �23� yields
an expansion for � f, Eq. �16�, as

� f
�−1� = 0,

� f
�0� = − IP�0�,

� f
�1� = − IP�1� + 2� fDy�V�0�� ,

. . . ,

� f
�j� = − IP�j� + 2� f�Dx�V�j−2�� + Dy�V�j−1��� �j � 1� .

�24�

In this case, the wave celerity depends on the global charac-
teristics of both phases �7�. Thus, this macroscopic mode is
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called biphasic or equivalently drained since the relative
fluid and solid motion is not zero. This mode, which repre-
sents the most general situation, is the one which is going to
be studied.

2. Elastic macroscopic mode

The transient Reynolds number RT=O�	� corresponds to
the high-frequency range studied by �2�. The contrast be-
tween the fluid and solid mechanical characteristics � f� and
C�4� is of the same order of magnitude as RT—i.e.,
� f� / �C�4��=O�	�.

Since this mode can be derived from the biphasic mode
by equating the fluid and solid displacements u f

�0� and us
�0�,

no further details are given. However, it is worth mentioning
that in contrast with the biphasic mode, there is no relative
fluid and solid motion and this regime can be also called the
undrained regime.

3. Viscoelastic macroscopic mode

The third mode of wave propagation obtained by �7� cor-
responds to very high frequencies when the transient Rey-
nolds number RT is of order O�	2�. The contrast between the
fluid and solid mechanical characteristics C�4� and � f� is
small. Since these very high frequencies do not correspond
to acoustic waves, this mode will not be studied here. The
Navier-Stokes equation keeps its form �7� and �8�, and on a
macroscopic scale, the medium behaves as a monophasic and
viscoelastic material �for more details, see �7��.

III. BIPHASIC MACROSCOPIC MODE OF A SATURATED
POROUS MEDIUM

Wave propagation follows the biphasic macroscopic be-
havior if

�
 fl
2

� f
= O�1�,

� f�

�C�4��
= O�	2� . �25�

The macroscopic description can be obtained from the fluid
and solid microscopic equations with the appropriate condi-
tions at the solid-fluid interface. The detailed developments,
which follow closely �7�, are given in Sec. A of �12�. The
asymptotic expansion for the pressure and for the displace-
ment fields and the introduction of two scales allows us to
derive the governing equations for the fluid and solid phases
at various orders in 	. Considering them successively, two
separate problems for micro- and macroscales are obtained.
The macroscopic description is derived by integration of the
microscopic equations over �s for the solid and over � f for
the fluid, respectively. The coefficients for the macroscopic
equations �A44� of �12� are determined by solving two prob-
lems in the solid and in the fluid phases.

The linearized Navier-Stokes equation in terms of the
relative velocity W, Eq. �A26�, reads as

� f�yW − i
 f�W − �yP�1� = − G, �y · W

= 0 in � f , �26a�

W = 0 on � ,

from which the dynamic permeability K can be deduced:

�K/� f� · G = �W� . �26b�

This equation describes the wave propagation at frequency �
in the fluid. It corresponds to the fluid motion submitted to
the macroscopic pressure gradient G.

The effective stiffness tensor D�4�
�0� can be determined from

the solution of the elastostatic equation when the porous me-
dium is submitted to the macroscopic deformation E�U�0��:

�y · �C�4�:�e�u�1�� + E�U�0���� = 0 in �s,

�C�4�:�e�u�1�� + E�U�0���� · n = 0 on � . �27a�

Therefore,

D�4�
�0�:E�U�0�� = �C�4�:�e�u�1�� + E�U�0���� . �27b�

The coefficients � and � �Eqs. �A13� and �A14� in �12��,
which quantify the mechanical reaction of the solid matrix
on the fluid pressure, are derived from the solution of the
elastostatic equation when the porous medium is submitted
to the unit interstitial pressure P=1:

�y · �C�4�:e�q�� = 0 in �s, �C�4�:e�q�� · n = − n on � .

�28a�

Therefore,

� = �C�4�:e�q��, � = ��y · q� . �28b�

The numerical solutions will be addressed in Sec. IV for
the flow problem �26a� and �26b� and in Sec. V for the elas-
tic problems �27a�, �27b�, �28a�, and �28b�.

IV. SOLUTION OF THE NAVIER-STOKES EQUATION:
DYNAMIC PERMEABILITY

The full set of equations for the biphasic macroscopic
description is given by �A44� in �12�. These equations are
written for the unknowns U�0�, �W�, and P�0�. The coeffi-
cients D�4�

�0�, �, �, and K are the macroscopic characteristics
derived from the solutions of the local problems �27a�, �27b�,
�28a�, �28b�, �26a�, and �26b�, which can be solved sepa-
rately.

The dynamic permeability K is a frequency-dependent
tensor with complex values

K = Kr + iKi, Kr = Re�K�, Ki = Im�K� . �29�

The meaning of the complex values of K can be grasped by
considering the simple case of an isotropic permeability ten-
sor:

K = KI, K = Kr + iKi. �30�

Then, the dynamic Darcy’s law �A36� in �12� can be written
as

�W� = � f
−1
K
�− �x · P�0� + 
 f�

2Us
�0��ei arctan�Ki/Kr�. �31�

The ratio Ki /Kr characterizes the phase change of the propa-
gating wave. As shown by �2�, when � increases, 
K
 de-
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creases and 
Ki
 becomes larger than 
Kr
; i.e., the phase shift
increases and influences the wave amplitude, which is de-
creased. On the other hand, when � tends to zero, K tends to
the static permeability and the phase shift disappears �Fig. 2�.

A. Problem formulation

The Navier-Stokes equation for the incompressible fluid
submitted to the pressure gradient �P is written as

� f�W − i
 f�W = �P, � · W = 0 in � f,

W = 0 on � , �32�

where W is the fluid velocity and P the pressure, which can
be decomposed into a linear trend associated with a macro-

scopic pressure gradient −G and �-periodic fluctuations P̃:

P = − y · G + P̃ . �33�

The introduction of Eq. �33� into Eq. �32� yields a micro-
scopic fluid equation of order O�	0�:

� f�W − i
 f�W = − G + �P̃, � · W = 0 in � f,

W = 0 on � . �34�

Therefore, P̃ corresponds to the field P�1� in Eq. �26a�. The
components of K can be obtained by solving Eq. �34� for a
unit gradient G along each direction x, y, and z �see Eq.
�26b��. For an isotropic medium, K, Eq. �30�, is derived from
the solution of Eq. �34� for any G.

B. Numerical solution

Define the dimensionless quantities denoted by a prime:

P = P�P0, � = ��
1

l
, � = ��

1

l2 , W = W�W0,

� = ���0, G =
P0

l
G�, �35�

where l is the characteristic length scale and P0, W0, and �0
are characteristic values of the pressure P, velocity W, and
frequency �, respectively. By choosing

W0 =
P0l

� f
, �0 =

� f


 fl
2 , �36�

Eq. �34� becomes

��W� − i��W� = − G� + ��P̃�,

�� · W� = 0 in � f, W� = 0 on � . �37�

Note that �� is equal to the Reynolds number RT defined in

Eq. �21�. The solutions P̃� and W� are complex numbers,
which can be written as

W� = Wr� + iWi�, P̃� = P̃r� + iP̃i�. �38�

Substitute �38� into Eq. �37� to obtain

�Wr� + ��Wi� = − G� + ��P̃r�,

�Wi� − ��Wr� = ��P̃i� in � f , �39a�

with

� · Wr� = � · Wi� = 0 in � f, Wr� = Wi� = 0 on � .

�39b�

The numerical solution of the Eqs. �39a� and �39b� is based
on a finite-volume formulation. The unknown velocities W j�

and pressure P̃j� are determined at the grid points r j, which
are the corners of a structured or unstructured tetrahedral
mesh. In the present work, all the calculations have been
made with the SCT6-structured mesh defined and shown in
Fig. 3 �see also �11��. The control volumes are parts of
the tetrahedra �k. Velocities and pressures are supposed to
vary linearly over each tetrahedron. Therefore, their deriva-
tives are piecewise constant and this numerical method is
first order.

By integrating Eqs. �39a� over the control volume � j,
applying the divergence theorem, and using the discrete for-

10
−3

10
−1

10
1

10
3

10
−4

10
−2

10
0

ω′

K
′

FIG. 2. The analytical solution for the dynamic permeability
given by �2� for a porous medium of porosity � made of parallel-
plane channels of aperture 2h. K� and �� are the dimensionless
permeability and frequency, K�=3K / ��h2�, and ��=h2� / �3� f�.
Solid line: Re�K��. Dashed line: −Im�K��.

a b

FIG. 3. �Color online� The structured mesh SCT6. The domain is
represented by a regular array of cubic elements. Each of them is
decomposed into six identical tetrahedra; one of them is shown in
�a� and three of them in �b� where one of the symmetry planes is
visible.

WAVE PROPAGATION THROUGH SATURATED POROUS MEDIA PHYSICAL REVIEW E 77, 066302 �2008�

066302-5



mulation of the differential operators, the system of linear
equations for W j� is derived as

A · W� = B, where W� = �Wr�

Wi�
� , �40�

where B is a forcing term that depends on P̃�.
The solution algorithm is as follows. First, for any initial

field P̃0�, the forcing term B0 is calculated; a classical
conjugate-gradient algorithm is used to solve the system of
linear Eqs. �40� for W� with B=B0. Then, the artificial com-
pressibility approach is used to determine the correction to

P̃0� for the next iteration:

P̃n+1� = P̃n� + cp
−1� · Wn�, n = 0,1, . . . , �41�

where cp is a pseudocompressibility coefficient which is first
chosen arbitrarily and then adapted during numerical experi-
ments to achieve stability during convergence. Then, B is
recalculated and the corresponding corrections to W� are
found. This algorithm is stopped when the residue estimated

from the current pressure P̃n� and the residue estimated from
the current velocity field W� are smaller than a prescribed
solution accuracy �:

�P̃n+1� − P̃n��
�G��L

=
�cp

−1� · Wn��
�G��L

� �,
�A · W� − B�

�B�
� � .

�42�

To quantify the computational requirements, consider the
fluid flow motion in a cylindrical tube of radius R=8 within
a cubic unit cell of size L=30 discretized by the SCT6 mesh.
The number of grid points in the pore space is Np=5910, and
the required memory is about 30 MB. The computational
time T depends on ��. For ���O�1�, T is about 30 s, while
for ��=10 it is almost 2 min with a processor RISC Power4
1.5 GHz. Note that for more complicated geometries T sig-
nificantly increases. For example, for a reconstructed porous
medium of size 64 with a correlation length 8 and porosity
�=0.3 �see Sec. IV C 1�, the grid contains about 260 000
points and T is about 45 h for low values of ��.

C. Results

In this section, the Navier-Stokes equation is solved for
several model and real media and the function K���� is de-
termined.

1. Unimodal reconstructed porous media

Unimodal porous media are reconstructed according to
prescribed porosity and correlation length. The details of the
reconstruction procedure can be found in �14�. The sample is
composed of elementary cubes of size a entirely filled with
solid or void; this is described by a binary phase function
Z�x�, which is equal to 1 if the point x belongs to the pore
space and zero otherwise. This phase function is statistically

characterized by a porosity � and a correlation function
RZ�u�:

� = Z�x�, RZ�u� =
�Z�x� − ���Z�x + u� − ��

�� − �2�
, �43�

where u is the norm of the translation vector u.
Here, Z�x� is derived by thresholding standard Gaussian

variables Y correlated by

RY�u� = e−u2/lc
2
, �44�

where lc is the correlation length.
Several samples of size L=64a with different combina-

tions �� , lc� were generated for the numerical experiments.
Such a medium is illustrated in Fig. 4�a�.

a. Influence of the correlation length. First, samples are
studied with �=0.3 and lc /a=4,6 ,8 ,12,16,24,32. A unit
global pressure gradient G� is imposed along the x axis. The
resulting vector �W�� yields the components of the dimen-
sionless permeability tensor K�=K / l2:

�Kxx�

Kxy�

Kxz�
� = �W�� . �45�

a b

c d

FIG. 4. �Color online� Model and real porous media discretized
into 1283 elementary cubes. �a� Unimodal medium HP. �b� Bimodal
medium with nonpercolating vugs NPV; �p=0.24 and �v=0.08. �c�
Real sandstone of size L=716.8 �m composed of five components;
gray cubes are filled by quartz, red by K-feldspar, green by biotite,
blue by pyrite, and yellow by zircon, respectively. �d� Real vuggy
carbonate; gray and red cubes are filled by calcite and pyrite,
respectively.
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Several length scales l will be used in the analysis of the
data. When l is equal to lc, denote

Kc� = K/lc
2, �c� =

�
 flc
2

� f
. �46�

Note that all the media considered here are the same within
changes in the observation scale; they should therefore yield
identical K� for identical ��. However, variations can be ex-
pected for two reasons. First, statistical fluctuations should
be important when the statistical content of the sample is
small—i.e., when lc /L is of the order of unity. Second, sys-
tematic deviations may occur when the spatial discretization
of the microstructure is poor—i.e., when lc /a is not much
larger than 1.

The averages K̄xx,c� �generally denoted by an overbar� of
Kxx,c� over three independent realizations are displayed in Fig.
5. As expected, the data for lc /L=3 /8 and 1/2 are the most
scattered because of the small statistical content. It is also
observed that the results for the poorest discretization lc /a
=4 are noticeably smaller than the others.

Re�Kxx,c� � �Fig. 5�a�� tend to their static values when �c�
tends to zero, as expected. On the other hand, when �c�

→
, Re�K̄xx,c� � tend to zero as ��c� /��−3/2 and Im�K̄xx,c� � vary

as ��c� /��−3/4. For �c�→0, Im�K̄xx,c� � tend to zero as �c�.
The hydrodynamic properties of the media are primarily

characterized by the absolute permeability. Two different
modes are observed in Fig. 6�a� which correspond to the
low- and the high-frequency ranges. In the first mode, 
Kxx,c� 

is constant. Then, the behavior changes and 
Kxx,c� 
 tends to
zero as ��−3/4, since it is dominated by the imaginary part. It
can be noticed that all the curves have similar shapes, but
that they are shifted vertically; i.e., the onset frequency of the
permeability decay varies.

In order to find a unified description for the permeability,
let us use other length scales l. Ref. �15� proposed a charac-
teristic length �, which is an intrinsic measure of the inter-
connected pore size. It is directly related to transport and can
be defined as

� = 2

�
�f

���0�r��2d3r

�
�

���0�r��2ds

. �47�

� is calculated by solving the Laplace equation in the pore
space �16�.

The dimensionless permeability K�� and frequency ��� are
defined as �cf. Eq. �46��

K�� = K/�2, ��� = �
 f�
2/� f . �48�

The average 
K̄xx,�� 
 over three independent realizations for
each lc is shown in Fig. 6�b�. � reduces the scatter of the
results for low frequencies, primarily by compensating for
the statistical fluctuations for lc /L=3 /8 and 1/2.

Another characteristic length ls which takes into account
the transport properties of the medium can be derived from
the static permeability K0. With obvious notation,

ls = 
K0, Ks� = K/K0, �s� = �
 fK0/� f . �49�

This is very successful in gathering the data for all the cor-
relation lengths. There is no scatter of the results in both
limits �s�→0 and �s�→
 and only residual fluctuations for
the frequencies ��=O�1� which correspond to the phase
change of Kxx. For small �s�, the result is trivial because K is
equal to Ko in this limit. However, this normalization isolates
the dynamical effects which influence the permeability at
large frequencies from the geometrical parameters which de-
termine the static permeability.

b. Influence of porosity. The following series of tests has
been done for unimodal media with �=0.15, 0.2, and 0.3 and
lc /a=6, 12, and 24. The sample size is still L=64a. Three
independent realizations were again generated for each pair
�� , lc� in order to estimate the statistical fluctuations. Note
that the values lc /a=4 and lc /a=32, which yielded discreti-
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zation effects and large statistical fluctuations, respectively,
in the previous tests, are not used here.

The static permeability K0, which is of course expected to
be an increasing function of � and lc, can be approximated by
�Fig. 7�a��

K̄0,�� = K̄0/�2 = 0.02� − 8.5 � 10−4. �50�

Note that this model predicts a percolation threshold for �
�0.0425, which is consistent with the observations of �17�
for Fontainebleau sandstones.

Let us now examine the behavior of the dynamic perme-

ability K̄xx averaged over three independent realizations for
each pair �� , lc�. Three sets of curves which correspond to the
various values of � are clearly distinguished in Fig. 7�b�. In
the low-frequency regime, their vertical shift results from the

dependence of K̄0,c� on �. However, there is also a shift of the
onset frequency for the permeability decay which increases
when � decreases.

The data were also normalized by � and K0. This last
choice, which is again the most successful, is displayed in
Fig. 8�b�.

2. Bimodal reconstructed porous media

Bimodal porous media possess micropores and
macropores �also called vugs� with typical length scales lp
and lv, respectively. They are reconstructed in two steps �18�.
A first field Zp�x� with a porosity �p and a correlation length
lp which corresponds to the micropores is generated. Then, a

second field Zv�x� statistically independent of Zp�x� is gen-
erated with a porosity �v and a correlation length lv ��lp�
which corresponds to the vugs. The bimodal medium is ob-
tained by superposition of these two fields:

Z�x� = Zp�x� + Zv�x� − Zp�x�Zv�x� . �51a�

The total porosity �t is derived by averaging the previous
formula:

�t = �p + �v − �p�v. �51b�

Each of the two individual pore systems is statistically ho-
mogeneous on scales large with respect to lp and lv, and the
bimodal porous medium itself is statistically homogeneous
on scales larger than lv. The unit cell is periodically repro-
duced in all directions.

Four media are used in this section. First, the sample
named NPV �nonpercolating vugs� is characterized by �p
=0.24, lp=8a, �v=0.08, and lv=32a. The second bimodal
medium named PV �percolating vugs� is characterized by
�p=0.167, lp=8a, �v=0.16, and lv=32a. For reference, a uni-
modal medium HP with micropores only ��p=0.3, lp=8a�
and a unimodal medium HV with vugs only ��v=0.3, lv
=32a� were also generated. All these samples have a size L
=128a and an overall porosity in the range 0.30–0.32. One
sample is illustrated in Fig. 4�b�.


Kzz� 
 normalized by lv
2 for the samples with macroporosity

�HV, PV, and NPV� and lp
2 for the sample HP with mi-

croporosity only increases with �v �see Fig. 7�c��. For the
unimodal media HP and HV, which only differ by a scale
change, the normalized data 
Kzz� 
 are indeed found to be
nearly identical. The two bimodal media yield significantly
smaller values of 
Kzz,c� 
, because �v associated with lv is
smaller and NPV does not even percolate by itself.

3. Real porous media

Two real samples were measured by microtomography.
The first one is a sandstone of size L=716.8 �m with �
=0.246, which is composed mostly of quartz and some
k-feldspar, biotite, pyrite, and zircon. It is discretized by
�128�3 elementary cubes of size a=5.6 �m �see Fig. 4�c��.

K was calculated for � ranging from 5 to 500 000 Hz. The
pore space is filled by a brine with a viscosity � f =0.96
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FIG. 7. �Color online� �a� The absolute permeability K0,�� as a
function of porosity � for unimodal media. Data are for lc /L
=3 /32 ���, 3/16 ���, and 3/8 ���. The dashed line corresponds to
the numerical fit �50�. �b�,�c�,�d� The modulus of the permeability


K̄xx,c� 
 as a function of �c�. �b� Unimodal media. Data are for �
=0.15 �black dotted line�, 0.2 �red dashed line�, and 0.3 �blue solid
line�; lc /L=3 /32 ���, 3/16 ���, and 3/8 ���. �c� Bimodal media;
data are for HP ���, NPV ���, PV ���, and HV ���. �d� Real
media: sandstone ��� and carbonate ���; the solid line corresponds
to Re�Kzz� / l2 and the dashed line to −Im�Kzz� / l2 with l=5.6 �m.
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�10−3 Pa s and a density 
 f =1.034�103 kg /m3. The di-
mensionless frequency �c�, Eqs. �35� and �36�, is defined
with l arbitrarily taken equal to 5.6 �m. The components of
K are found by imposing a unit pressure gradient G along the
z axis. Dimensionless values of the component Kzz are plot-
ted in Fig. 7�d� as functions of �l�. Phase change occurs
when �l�=O�1�—i.e., ��10 kHz.

The second medium is a vuggy carbonate which can be
decomposed into 15% of pores, 84.84% of calcite, and
0.0175% of pyrite; it does not percolate along the x axis. L
and the discretization of the sample are the same as before
�Fig. 4�d��. The calculations were performed for � ranging
from 5 to 500 000 Hz, with 
 f =1.034�103 kg /m3 and � f
=0.96�10−3 Pa s.

A unit pressure gradient G is imposed along the z axis,
and the dimensionless results are presented in Fig. 7�d�, in
comparison with sandstone. Since 
 f, � f, and l are identical,
this figure also provides a direct comparison of the dimen-
sional permeabilities. The carbonate is found to be much less
permeable than the sandstone, primarily because of its much
smaller porosity. The offset frequency for the permeability
decay is slightly larger. Again these results could be trans-
posed to other fluids by setting the appropriate coefficients in
Eq. �46�.

4. Discussion

lc is a natural choice for a comparison of unimodal media,
and it is indeed sufficient for a fixed porosity. However,
when several porosities associated with different typical
sizes coexist and contribute differently to the hydraulic prop-
erties according to their volume fractions, it is difficult to
predict which scale is the most relevant. This was illustrated
in Fig. 7�c� for media with similar overall porosities, but
different proportions of vugs and micropores.

It is therefore natural to use the length �, which is essen-
tially a pore volume to pore surface ratio and thus a measure
of the typical pore size; however, because of its definition
Eq. �47�, the pore regions which do or do not really contrib-
ute to a transport process are weighted by their volume. The
data for unimodal and bimodal media with �=0.30 are com-
pared in Fig. 8�a�, and they seem indeed to gather around a
unique curve.

Another successful representation is Ks���s��. It is not dis-
played for sake of brevity.

It is also possible to mix the length scales � and 
K0 as
done in Fig. 8�b� with the plot Ks����� �. The data include real
and model media with � ranging from 0.15 to 0.30. Again,
this representation gathers fairly well the results.

The formation factor F is defined as the ratio between the
electrical conductivities of the pore fluid � f and of the satu-
rated porous medium � when the solid phase is insulating:

F =
� f

�
. �52�

F is determined by solving the Laplace equation �14�. � and
K0 are approximately related to F for random networks of
capillary tubes and channels �8�:

K0F

�2 =
1

8
for tubes, =

1

12
for channels. �53�

Different values have been obtained for other media, but of
the same order of magnitude �16�.

Because of Eq. �53�, �2 can be identified within a fairly
constant factor with K0F and Fig. 8�b� is equivalent to the
representations of 
Ks�
 vs �
 fK0F /� f used by �8�, �9�, and
�10� for capillary networks, simple cubic lattices of solid
grains, and corrugated channels, respectively. Therefore, our
data extend these former results to more complex three-
dimensional random geometries.

V. ELASTIC PROBLEMS

The macroscopic description of wave propagation in the
biphasic mode requires the derivation of the rigidity tensor
D�4�

�0� from Eqs. �27a� and �27b� for imposed macroscopic
deformations E�U�0�� and the derivation of � and � from
Eqs. �28a� and �28b� for an imposed interstitial macroscopic
pressure P�0�. For clarity, the necessary developments are
summarized in Sec. B of �12�.

Since the results for D�4�
�0� have been examined by �11�,

only the data for the coefficients � and � are discussed here.
If the solid matrix consists of nonoverlapping spheres such
as in packed beds of spherical grains, � is given by

�gr = −
1 − �

Ks
, �54�

where Ks is the solid bulk modulus. Moreover, an elementary
analysis for a single spherical cavity in an unbounded solid
matrix implies that � for a porous medium containing dilute
spherical pores is given by �cf. Sec. B 3 in �12��

�cav = −
3�

4�s
, � � 1. �55�

It is interesting to note that for nonconsolidated media,
which are analogous to the first case, � depends on Ks, while
for consolidated media, which are analogous to the second
case, � depends on �s.

Numerical calculations have been conducted for media
made up of solid grains or containing spherical cavities, ar-
ranged in a simple cubic array, with � ranging from 0.02 to
0.98. The results are shown in Fig. 9 and compared with Eqs.
�54� and �55� for �s=0.275. For solid grains, an excellent
agreement with Eq. �54� is observed, as long as ��1− �

6 . For
smaller porosities, the grains overlap and the situation pro-
gressively reverts to pores �first connected and then discon-
nected� in a consolidated material.

The numerical data for spherical pores agree with Eq. �55�
up to �=0.05. For larger porosities, Eq. �55� does not apply
because of the interactions between cavities. Hence, � in-
creases with � more slowly than predicted by Eq. �55� and
eventually starts decreasing when the cavities start overlap-
ping for �= �

6 . When � approaches 1, only isolated solid parts
remain and � is again given by Eq. �54�, although these parts
are not spherical.

Data for the uni- and bimodal media are also shown in

Fig. 9, and the average value �̄ was calculated for each pair
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� , lc. All the data lie between the curves �54� and �55�.
�� should be independent of lc for a given porosity. There-

fore, the differences in the numerical values can be viewed
as a discretization effect.

Since all the media considered here are statistically iso-
tropic or with a cubic symmetry, � is related to � by

� = �� + �Ks�I , �56�

where Ks is the bulk modulus of the solid �12�. This relation
has been successfully checked.

VI. MACROSCOPIC CHARACTERISTICS
OF THE WAVE PROPAGATION: WAVE

CELERITIES AND ATTENUATION

Once the dynamic hydrodynamic �Sec. IV� and elastic
�Sec. V� properties are determined, the acoustic parameters
can be derived. The displacement of the plane harmonic
wave and the macroscopic pressure can be written as

u = ũe�−ikx·p+i�t�, P�0� = P̃�0�e�−ikx·p+i�t�, �57�

where k is the wave number and p is the direction of the
wave propagation. Using Eq. �57�, the macroscopic Eqs.
�A44� in �12� can be simplified; the wave celerities c and the

vectors Ũs
�0� and �W̃� are found as the eigenvalues and the

eigenvectors of the system

�B−1 · A� · U = c2U with U = �Ũs
�0�

�W̃�
� �58a�

and

A = �p · D�4�
�0� · p + �−1p · �� · p �−1p · �p

1

� f�
K · p� · p

1

� f�
K · pp� ,

B = � �
�I �
 f�I

−

 f

� f
K −

i

�
I � . �58b�

�¯� denotes the average operator over the unit cell �cf.
�A15� in �12��. Equations �58a� and �58b� can be further
simplified for an isotropic medium. Consider first a shear
wave with Us

�0� and �W� perpendicular to p and �W�
=W�Us

�0�. Taking into account �30� and �B5� in �12�, the mac-
roscopic Lamé coefficient �s,ef f can be derived from Eqs.
�58a� and �58b� as

�s,ef f = c	
2 ��
� + �
 f�W��, 0 =


 f

i�� f
K + W�/�2, �59�

where c	 is the shear wave celerity given by

c	
2 =

�s,ef f

�
��1 −
�
 f�
�
�

�� , � =
�
 fK

i� f
. �60�

Similarly to Eq. �59�, the macroscopic equation for the com-
pressional wave can be simplified and a fourth-degree equa-
tion for c� is derived as follows. The relative displacement
�W� which is parallel to Us

�0� can be written as

�W� = W�Us
�0�. �61�

Taking into account �30� and �B5� in �12� and Eq. �61�, Eq.
�58a� and �58b� becomes

�s,ef f + 2�s,ef f +
�2

�
− c�

2�
� = W��c�
2�
 f� −

�

�
� , �62a�

�

�

K

� f
+ c�

2
 f
K

� f
= − W�� 1

�

K

� f
+ c�

2 i

�
� . �62b�

Denote by c0 the compressional wave celerity for dry porous
media �
 f =0, � f =0�,

c0
2 =

�s,ef f + 2�s,ef f

�
�
, �63�

and introduce the dimensionless parameters � and �:

� =
� f�c0

2

K�
, � =


 f

�
�
. �64�

Then, using Eqs. �63� and �64�, c� is deduced by equating to
zero the determinant of the eigenvalue problem Eqs. �62a�
and �62b�:

� c�

c0
�4

���
���2c0
2 − i�� + � c�

c0
�2�i��1 +

�2

c0
2��
��

− �1 + ���1 + ���� + 1 = 0. �65�

The two solutions of Eq. �65� correspond to the fast and slow
compressional waves.

The celerities c� for compressional and c	 for shear waves
are complex values—i.e.,
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0
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0.6

0.9

ε
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FIG. 9. �Color online� ��=−�Es for media containing spherical
cavities �
� or solid spheres ���, for the reconstructed porous media
and for the real media; the dash-dotted red lines are the analytical
solutions �55� for spherical cavities ���1� and �54� for solid
spheres ���1−� /6�. The Poisson ratio is �s=0.275 in all cases,
except for the real media. Conventions are the same as in Fig. 8.
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c = cr + ici, cr = Re�c�, ci = Im�c� . �66�

The propagation velocities cp, the attenuation coefficient ah,
and the penetration depth h are determined by substituting
the complex celerities c into Eq. �57�:

cp =

c
2

cr
, ah =

�ci


c
2
, h = ah

−1. �67�

A. Results

1. Unimodal reconstructed porous media

The same samples as in Sec. IV C 1 were used to calcu-
late the average effective moduli and dynamic permeability.
Then, c� and c	 are derived. The dimensionless frequency
��� is given by �48� and the dimensionless celerity c� is de-
fined as

c� = c
 
 f

ES
. �68�

The first important result is that the influence of ��� on c� and
c	 is negligible �Fig. 10�. In the low-frequency range, the
celerities are constant and they slightly decrease when ��
�O�1�; this corresponds to the phase change of the dynamic
permeability �Sec. I� and consequently to the mode of wave
propagation.

Figure 10 also shows that the celerities are decreasing
functions of lc /L. The difference between celerities for the
same �, but different lc, is almost the same as for a dry pore
space. For �=0.15, the values of c�� for lc=6a and lc=24a
differ by 3.6%–4.6%. This difference increases with � since
it is about 7%–8% and 10%–11% for �=0.2 and 0.3, respec-
tively.

Figures 11�a� and 11�b� display the dimensionless pen-
etration depths h�=h /� as functions of ��� for all the media.
In the low-frequency range, h is very large compared to �
for both compressional and shear waves. h	 /� does not de-
pend on lc. The dispersion of h observed in Fig. 11�a� can be
attributed neither to lc nor to �. When represented as h /� as
a function of ��� , the same data are more dispersed than the
previous ones; again, h is large compared to �.

The second-degree equation �65� for c�
2 has two solutions.

The second root corresponds to the slow and highly attenu-

ated wave �2�. In Fig. 11�c�, the slow wave celerities for
various � and lc are plotted as functions of ��� . In the low-
frequency range, the slow wave celerity increases as 
��� up
to ��� =O�1�. Its values for all the media are the same, except
for lc /L=3 /8 with �=0.15 and �=0.2. Then, the behavior of
this celerity changes for frequencies ��� �O�1�. Three
groups can be distinguished for each value of lc. However, c��
is independent of � at high frequencies.

h for the slow wave is almost the same for all the media
�Fig. 11�d��. When represented in terms of h /�, these data
show that h is of the order of � for low frequencies and then
becomes smaller than � for high frequencies.

2. Bimodal reconstructed porous media

The media are the same as the ones generated in Sec.
IV C 2. In Figs. 12�a� and 12�b�, the wave celerities are plot-
ted as functions of ��� . In the low-frequency range, they are
constant and do not depend on ��� . Then, the wave propaga-
tion mode is changed when ��� �O�1� as observed for the
unimodal media �Fig. 10�.

The celerities of the microporous medium HP with lp
=8a and of the vugular medium HV with lv=32a differ by
about 8%, while the celerities of the two bimodal media and
of the unimodal medium HP are almost the same; i.e., the
wave celerities are not influenced by the microstructure.
Note that the total porosities are not exactly equal and that
this may also influence the celerities.

Figures 12�c� and 12�d� show the influence of lc on h. The
results for the bimodal medium NPV and PV are the same,
and their values are close to those for the microporous me-
dia. Again, h� is different for the media HV and HP. How-
ever, in the low-frequency range, h	 /� is similar for all
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media. For the same data, the plots h /� show that h for both
compressional and shear waves is very large compared to �;
i.e., wave attenuation is negligible.

The slow wave celerities in the low-frequency range are
almost the same for all media and the results are very close
to Fig. 11�c�. Moreover, h decreases with ��� and becomes
small with respect to � with results very similar to unimodal
media.

3. Real porous media

The wave celerities are also determined for the sandstone
and the carbonate described in Sec. IV C 3 for which Eq.
�68� is applied with the modulus of the main solid compo-
nent: namely, quartz and calcite, respectively. For all these
media, the wave celerities do not depend on ��� as shown by
Fig. 13�a�. Moreover, c	 is close for the two materials, while
c� is much larger for carbonate than for sandstone because of
a smaller porosity.

The geometry has not much influence on h for both types
of waves as seen in Fig. 13�b�. h is much larger than � �Fig.
13�c�� as observed for unimodal media.

For the slow wave, Fig. 14 shows that c� and h� are almost
the same in the real sandstone and carbonate. As for the
unimodal media, the regime changes for ��� =O�1�. For low
frequencies, the celerities are very small and they increase
quickly for high frequencies. Since h��, the slow wave
decays within distances smaller than �.

But the whole theory is valid only if � is much smaller
than L according to Eq. �2�. The same condition should be
requested for h—i.e., h�L—for the result to be physically
valid. If h is smaller or equal to L, its estimation is question-
able.

B. Discussion

Various porous media were considered, and the influence
of their microstructure on the wave celerities was analyzed.

For the slow wave, a unified description in terms of ��� is
possible for all the media as shown by Fig. 15. In agreement
with the predictions of �2�, Fig. 15 shows that the slow wave
celerity is a function of 
��� and that h is a function of
1 /
��� .

The fast compressional and the shear wave celerities for
all the media almost do not depend on ��� and only small
variations appear when ��� �O�1�. The fast compressional
and the shear wave celerities for the model media with �
=0.275 can be roughly approximated by linear fits �Fig.
16�a��:

c�� = − 0.7� + 0.7, c	� = − 0.35� + 0.39. �69�

For the real media, c	� follows well the fit �69� for both
sandstone and carbonate �Fig. 16�a��. c� deviates more sig-
nificantly from the fit �69�. This may result from the hetero-
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geneity of the solid properties, especially for the sandstone
sample �see Fig. 4�c��.

The lengths h /� as functions of ��� for fast compres-
sional and shear waves are almost the same for all media
�Fig. 16�b��.

It has been demonstrated that the influence of the local
geometry on the slow wave celerity and the penetration
depth for all types of waves can be well taken into account
by �, Eq. �47�. The celerities of the fast compressional and
shear waves do not depend on the frequency. It linearly in-
creases when �→0 and varies with the microstructure. It
should be noted that the foregoing results apply only as long
as the scale separation condition �3� is satisfied. This implies

�� �

 fES�2

� f
2 or � �
 ES


 f�
2 . �70�

With the parameters for the sandstone in Sec. VI A 3, the
dimensional criterion reads ��108 Hz, which entirely cov-
ers the practical range.

The importance of � can be commented and understood
as follows. The definition �47� suggests that

� �
2Vp

S
, �71�

where S is the fluid-solid interface and Vp the corresponding
pore volume. In other words, � is proportional to the specific
surface of the porous medium. This approximate relation has
been verified by systematic calculations �19�. For high fre-
quencies, the interaction zone between the fluid and solid is
limited to a thin boundary layer. More precisely, the fluid
motion in the pores is that of a potential flow except in a
boundary layer of thickness � 2�


 f�
�1/2 at the pore walls where

the velocity goes to zero �8�. Therefore, the interaction is
limited to the pore surface and it is likely that � plays a
crucial role in the rationalization of the data. The important
result of the present work is that this role is verified for
complex three-dimensional structures and not only for el-
ementary structures such as smooth or corrugated channels.

VII. CONCLUSIONS

The homogenization procedure is applied to the problem
of wave propagation in porous media saturated with a New-
tonian fluid. Three propagation modes are possible. The most
general case is the biphasic mode from which the elastic
mode can be easily derived. The viscoelastic mode was not
considered here because it applies to very high frequencies
and very small contrast between solid and fluid properties.

The local problems corresponding to the solid and fluid
phases have been solved separately. The effective rigidity
tensor and the effective coefficients � and � were derived
from the solution of the elastostatic equation in the solid with
imposed macroscopic deformations or interstitial fluid pres-
sure, respectively. The solution of the Navier-Stokes equa-
tion with imposed macroscopic pressure gradient yields the
dynamic permeability tensor.

The elastic and transport characteristics of the various
types of media were derived from the local problems and
used to determine the global wave properties—namely, ce-
lerity and attenuation—in a systematic manner. To analyze
the influence of the microstructure on the global results,
model and real porous media have been used; to tackle such
kinds of three dimensional media represents a significant
progress with respect to the relatively simple media such as
corrugated channels, which were addressed before. The re-
sulting compressional and shear wave celerities do not de-
pend on frequency. Substantial variations of the dynamic
permeability with frequency were observed. However, these
variations do not influence the wave celerities. The change of
the attenuation coefficient behavior was observed on the
same frequency range as phase change of the permeability.

The characteristic length � was successfully used to
gather the results for the dynamic permeability as well as
for the attenuation coefficients for all media; i.e., � fully
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stone ��� and real carbonate ��� �where green and magenta sym-
bols are for the compressional and shear waves, respectively. The
dashed line corresponds to 500 /��2.

WAVE PROPAGATION THROUGH SATURATED POROUS MEDIA PHYSICAL REVIEW E 77, 066302 �2008�

066302-13



describes the influence of the microstructure on these results.
This property, which can be interpreted in terms of the rela-
tion between � and the specific surface, is general and can
be extended to other types of porous media.
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